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On the recoupling coefficients and isoscalar factors of a chain 
of groups 

Maurice R Kibler 
Institut de Physique Nucleaire, Universite Lyon-I et IN2P3, 69621 Villeurbanne, France 

Received 16 May 1977, in final form 14 July 1977 

Abstract. Recoupling coefficients and isoscalar factors of a chain of compact topological 
groups (finite or continuous) are discussed in terms of character formulae. Special 
emphasis is put on the chain SU2 3 G, where G is isomorphic with the spinor group of a 
point symmetry group. 

1. Introduction 

The theory of invariants is of intrinsic importance in mathematics (Weyl 1939) and 
plays an essential role in the applications of group theory to (atomic and molecular) 
physics (Wigner 1941, published in Biedenharn and van Dam 1965, pp 87-133, 
Racah 1942, 1949). The various mathematical invariants (e.g. invariant functions, 
Casimir operators, characters, isoscalar factors, recoupling coefficients, reduced 
matrix elements) associated with a group J or a chain J 2 G  of groups arise in 
numerous areas of mathematics and mathematical physics. They also supply basic 
quantities for specifying the physical properties of a (quantum) system which is 
invariant with respect to J or G. 

From a conceptual point of view, characters belong to the simplest family of 
mathematical invariants. It thus appears legitimate to try to relate mathematical and 
physical invariants to characters. 

Weyl (193 1) obtained formulae connecting energy levels for an N-equivalent- 
particle system to the characters of SN, the symmetric group on N objects. Wigner 
(1941) derived formulae involving 6- j  symbols and irreducible characters of a simply 
reducible finite or compact group. Following Wigner’s pioneer work, Sharp (1960) 
proved character formulae for 6-j and 9-j symbols of a quasi-simply reducible finite or 
(locally) compact group. Derome and Sharp (1965) extended some of the latter 
character formulae to the case of an arbitrary finite or compact group. (At this point, 
it is perhaps interesting to note that the papers by Wigner (1941), Sharp (1960), and 
Derome and Sharp (1965) are of central importance for the Wigner-Racah algebra of 
a chain of groups, a fact that is now only being fully recognised by molecular 
physicists.) More recently, Fieck (1977) rederived character formulae for 6- j  symbols, 
expressed in the W notation of Griffith (1962), of a simply reducible finite group 
having integer representations only. In addition, he developed some new character 
formulae for symmetrised isoscalar factors of a multiplicity-free chain of simply 
reducible finite groups with integer representations. 
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There are numerous points that warrant further development of the above 
mentioned character formulae. As a matter of fact, the chains we deal with in physics 
are far from being all multiplicity-free chains of simply reducible finite (or compact 
continuous) groups having integer representations only. In atomic and molecular 
physics we are generally concerned with multiplicity-non-free chains of compact or 
locally compact topological groups. Such chains present fundamental interest both 
from a mathematical standpoint (classification, selection rules, calculation of matrix 
elements, etc) and a physical standpoint (state and operator labelling problem, descent 
in symmetry or symmetry breaking, perturbation theory, etc). On the other hand, the 
Clebsch-Gordan coefficient and the isoscalar factor enter into the physical ap- 
plications in a more natural way than the symmetrised Clebsch-Gordan coefficient (or 
3-jm symbol) and the symmetrised isoscalar factor (or 3-ja r symbol), respectively. 
Similarly, the recoupling coefficient relative to the coupling, via inner Kronecker 
product, of n > 2 classes of irreducible representations appears to be more fundamen- 
tal, on physical grounds, than its symmetrised version, i.e. the 3(n - 1)-j symbol. 
(Observe that the 3-jm, 6-j, and 9-j symbols correspond respectively to the V, W, and 
X symbols introduced by Griffitlr (1962) in molecular physics.) Furthermore, the 
interest in character formulae involving recoupling coefficients and isoscalar factors is 
threefold: (i) they provide, in a few cases, formulae for checking or computing 
recoupling coefficients and isoscalar factors, or formulae for computing integrals over 
special functions; (ii) they elucidate the symmetries of the recoupling coefficients and 
isoscalar factors; and (iii) they constitute a starting point for a further geometrical 
investigation, besides the standard diagram techniques (Yutsis et a1 1962, Agrawala 
and Belinfante 1968, El Baz and Caste1 1972, Stedman 1975, 1976, Lulek 1975, 
Guichon 1975), of the recoupling coefficients and isoscalar factors. 

It is the aim of this work to report character formulae for recoupling coefficients 
and isoscalar factors of an arbitrary chain J 3 G of compact topological groups. In 9 2 
we deal with recoupling coefficients for irreducible representations classes of J while 
we devote 9 3 to isoscalar factors of J 3 G. As a molecular example, the chain 
SU2 3 G is considered in 0 4. 

For the purpose of comparison, the relation analogous, if any, to ( a )  of Fieck 
(1977) shall be quoted as (Fa). 

2. Recoupling coefficients for an isolated group 

We adopt the following notation for our group J :  j stands for a class of irreducible 
representations of J,  D’ for the unitary matrix representation associated with j ,  and [ j]  
for the dimension of D’; the elements of J are denoted as R, S, T, . . . ; the matrix 
D’(R), whose elements are Di(R),,,, is the representative of R in D’; ,y’(R) denotes 
the character of R in j;  lastly, ( jl j2mlm2lbjm) stands for a Clebsch-Gordan coefficient 
of J with 6 being an inner multiplicity label necessary when the inner Kronecker 
product j l  Oj2 contains j more than once. (Note that the notation just described 
follows closely the standard notation for the group SU2 or rather the chain SU2 3 U,.) 

Our basic relation reads 

( j l  i2m 1 m 21 bim > ( j l  j2m I m ;I bjm ’>* 
b 
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where the (Stieltjes) integral Jy . . . dR is to be taken over the (topological) space j of 
the compact (topological) group J and I j (  =jj dR is the volume of 3. When J is finite, 
Jy. . . dR and IJI reduce to E R E , .  . . and to the order of J,  respectively. Following 
Sharp (1960), we shall refer to (F2) as Gaunt’s formula. ((F2) is of importance in the 
theory of special functions. In the J=SU2 case, the left-hand side of (F2) may be 
specialised to an integral over the product of three Legendre functions. Gaunt (1929) 
directly worked out such an integral in his work on the triplets of He.) 

We start from the definition (cf Kibler 1970) 

(il(i2i3)b~3i23b’i’m’l(ili2)bl~i12i3bim) 

= 6(iri)8(m’m )(il(i~i3)b23i23b’il(ili2)b12i12i3bi), 

where 

(i1(i2i3)b23i23b‘il(ili2)b~2il~i3bi) 

= [A-’ (i1(i2idb23i23b‘im l(ili~)b12id3bim) 
m 

is independent of the generalised magnetic quantum number m. Clearly, 
(il( j~i3)b23i23b’il(ili~)b12i12i3bi) is a recoupling coefficient for the n = 3 classes 
of irreducible representations j l r j 2 ,  and j3 which makes it possible to pass 
from the coupling scheme (((il 0 jz)b12j12) 0 j3)bj to the coupling scheme 
(il0 ((j2 0 i3)6~3j~db‘j. 

Character formulae involving recoupling coefficients for n = 3 classes of ir- 
reducible representations are easily obtainable from repeated applications of (Fl)  and 
(F2). As an example, we get the symmetric form 

X,y’(S-’U-’)dR d S  dT dU, (F4)‘ 

where we have used the abbreviation j j ~ p  for sj j y .  . . j y  ( P  times). It should be 
mentioned that the latter formula remains valid when substituting 
[j]2D’(S-’),,~D’( U-’),,,,,,, in place of ,y’(S-’ U-’). Further integration leads to the 
asymmetric form 
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Relations (F4)’ and (F4) were first derived by Wigner (1941) in the simply reducible 
case. In addition, (F4) is nothing but the transcription of relation (ii) of Derome and 
Sharp (1965) in terms of recoupling coefficients. 

In a similar way, we can obtain character formulae involving recoupling 
coefficients for n = 4 classes of irreducible representations. The relation (cf Kibler 
1970) 

((1’1 j 3 ) b  13 i 1 3 ( j 2  j 4 ) h  izd’j’m ’I (il j2 )b  12 j12 ( j3  j4)b34 j d j m  ) 

= 1’3411134) 
mlm2m3m4 

m 1 2 m w m n m 2 4  

x ( j l 2  j34  m 1 z m 34 I bjm )( j l  j 3  m 1 m 3  I b 13 j l 3  m 13)*( j 2  j 4  m 2 m 4  1624 j24  ma>*  

x ( j l 3 j ~ 4 m 1 3 m 2 4 l b ’ j ’ m ’ ) *  

defines the recoupling coefficient 

( ( ~ 1 ~ 3 ) ~ 1 3 ~ 1 3 ( ~ 2 ~ 4 ) ~ 2 4 ~ Z 4 ~ ’ ~ ~ ( ~ 1 ~ Z ) ~ ~ 2 ~ 1 2 ( ~ 3 ~ 4 ) ~ 3 4 ~ 3 4 ~ ~ )  

= ij1-I C ((iiis)bi3ii3(j2j4)b24j24bljm 
m 

useful for passing from the coupling (((jl 0 j ~ ) b 1 2 j 1 2 ) 0  ((j3 @j4)b34j34))bj  to the 
coupling (((j10 j3)b13j13) 0 ((1’2 0 j4)b24j24))b’j.  By using the property 

( ( i l  i3 )b l3 i~3( i~i4)b~4j24b’ j ‘m’ l ( j l j~)b1~j1~( j3 j4)b34j34bjm)  

= 8 ( j ’ j ) S  (m ’m )Nil i3 )bi3 i i3( i2 i4)b24i~4brj l ( j i  j~)bizji~(j3j4)b34j34bj) 

conjointly with Gaunt’s formula, we obtain the highly symmetric form 

x xi3 ( SU)xJ4(S V)xfg4(S- T),y’’ ( WU - ‘)x i24 ( WV- ’ ) 
x xi( W-’T-‘) dR dS d T  d U  d V  d W 

which also holds if x’( W-’ T-’) is replaced by [ jlZD’( T-l)mm,D’( W-l)mfm. A con- 
venient manipulation would allow the latter sixfold symmetric integral to be trans- 
formed into a fivefold asymmetric one. 

Before leaving Q 2 let us offer a remark (inspired by the work of Sharp 1960) 
concerning the preceding character formulae. For both the n = 3 and n = 4 cases, we 
have emphasised two forms for the character formulae: (i) a symmetric form which 
shows how to define, up to a phase, the 6-j  and 9-1’ symbols respectively from the 
recoupling coefficients for n = 3 and n = 4 classes of irreducible representations and 
(ii) an asymmetric form (after the redundant integrations have been performed) which 
seems to be more practical as far as computational purposes are concerned. We 
should like to point out that the symmetric forms can be written down immediately 
without detailed algebra by applying the following (heuristic) rules. 

Rule 1. Write I’I,,y’( ) where the product is to be extended over all the distinct j ’ s  
( j = j l , j z ,  .,. . , j l , ~ , .  . .) appearing on the left-hand side. In nix’( ) consider the sub- 
product x’’( ),yJ2( ),y’12( ) for which the frequency v( j121j1  Oj2) of j12 in j l 0  j 2  is 
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different from zero (that is to say for which il, j2, and j3 form an (ordered) triad). Then 
write 191-l J j x j l ( ~  . . .)x’z(R . . .),y’l2(R-’ . . .) dR, a way of depicting the coupling 
(il 0 i2 )b12i12  without complex conjugation. Such an expression involves one in- 
tegration variable R or S or T .  . . for each triad in n,,$( ). Once all the triads (or 
couplings) have been exhibited, we have the number P of integration variables. 

Rule 2. The desired quantity is thus simply 

[j12][ ] . . . I.fl-‘J ,y’l(R . . .),y’z(R . . .),y’l2(R-’ . . .) . . . dR . . . , 
S O P  

where we (only) include the intermediate classes of irreducible representations 
j 1 2 .  . . inside the [ 1’s. 

Rules 1 and 2 can be applied to higher recoupling coefficients. By way of illus- 
tration let us consider 

where the recoupling coefficient ( 1 ) is defined by 

a relation occurring in the coupling of n = 5 classes of irreducible representations. 
(When applied to SU2, the latter recoupling coefficient turns out to be proportional to 
the Jahn 12-j symbol (Jahn and Hope 1954), to be distinguished from the Elliott- 
Flowers 12-j symbol (Elliott and Flowers 1 9 5 5 ) . )  From rule 1, the product nix’( ) to 
be considered is clearly 

xjl( )xjz( ) x j 3 (  )xi”( )xi123( ) x j 4 ~ (  )x’”( )xi124( )xJ35( 1. 

Further, the parentheses in l-Iix’( ) are easily completed by the P = 8 integration 
variables R, S, T, U, V, W, X ,  and Y corresponding to the triads ( j2 j3 )b23j23 ,  

( i l i 23 )b123 i123 ,  ( i 4 i 5 h i 4 5 ,  ( i 1 2 3 i 4 ~ ) b i ,  ( i 2 i 4 ) b 2 4 h 9  ( i l i 24 )b124 i124 ,  ( I + ~ I ’ s ) ~ ~ s ~ s ,  and 
( j124j35)b’j ,  respectively. From rule 2, the dimensionality factor [i12][ 1 . .  . is simply 
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As a final result we obtain the symmetric form 

in agreement with a direct but long calculationt. 

3. Isoscdar factors of a chain of groups 

Let us now turn our attention to the chain J 3 G. We take for the subgroup G of the 
group J the notation deduced from that of J through the correspondence: j + I‘; R, S, 
T, . . , + r, s, r, . . . ; m + y ;  b + p. In addition To denotes the identity irreducible 
representation class of G. 

The reduction of the matrix representation D’ of G into the direct sum 
@ra(rlj)Dr, where a(Tli) stands for the frequency of r in j ,  may be achieved by 
means of a unitary transformation of which ( j m l j a r y )  denotes the m - a r y  matrix 
element. For fixed j and r, the outer or branching multiplicity label a classifies the 
various Dr-subspaces contained in the D’-space and thus takes on a(Tl j )  values. Such 
a label may be either: (i) a simple numeral; or (ii) characterised, at least partially, by 
the classes of irreducible representations of a chain of groups between J and G;  or (iii) 
an eigenvalue A of a labelling operator invariant under G (Patera and Winternitz 
1976, Bickerstaff and Wybourne 1976, Kibler 1977). The (jm1jary)’s obey (Koster 
1958, Kibler 1969) 

a relation which proves useful for determining the ( jml jar r )  matrix elements. (Note 
that a dimension factor is missing in (10) of Fieck (1977).) 

When going from the isolated group J to the chain J 3 G, the J Clebsch-Gordan 
coefficients ( j l j 2 m l m 2 J b j m )  combine to produce 

(il i2a lrl y l ~ ~ r 2 y 2  tbia rr) 
= C ( jl m I jl a rl yl)* ( izm I i2& ~ 2 ) *  ( il i2 m m z I him >(im I ja T Y ) ,  ( ~ 7  ) 

m l m m  

which is a J Clebsch-Gordan coefficient adapted to G or a J 3 G symmetry-adapted 
Clebsch-Gordan coefficient. (In the case where a = A ,  we refer to 
( j l j ~ A l r ~ ~ ~ A 2 r ~ ~ ~ l b j h  T y )  as a J 53 G supersymmetry-adapted Clebsch-Gordan 
coefficient (Kibler 1977)) In physical applications it appears worthwhile, on compu- 
tational grounds, to introduce the f symbol defined via 

t For J =_ SU2, the relation so obtained provides a character formula for the twisted 12-j symbol of Jahn. In 
a similar way, we could obtain a character formula for the untwisted 12-j symbol of Elliott and Flowers. 
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up to a phase factor exp(i4(bjl j z j ) ) .  In this respect, the Wigner-Eckart theorem for a 
compact continuous group (Wigner 1941, Racah 1942, 1949, Stone 1961), or a finite 
group (Koster 1958), or a locally compact group (Hillion 1966, Klimyk 1975) assumes 
a particularly simple form when using f symbols. We shall go back to the f’s in § 4. 

The J Clebsch-Gordan coefficients adapted to G are connected to the G 
Clebsch-Gordan coefficients (rlr2y1y21Pry) and the J 3 G isoscalar factors 
( j l ~ l r l j 2 ~ 2 r 2 1 b j ~ p r )  through 

C ( j l i 2 ~ l ~ l ~ l ~ 2 ~ 2 ~ 2 1 ~ i ~ ~ ~ ) ( ~ l ~ 2 ~ 1 ~ Z I ~ ~ i ~ i ~ *  
Y1Y2 

= s(rvs w Y ) ( i l ~  i2a2r2ibi~p ri, (F9) 
a relation that easily follows from Schur’s lemma. Inversion of (F9) leads to the 
lemma of Racah (1949): 

( i i2 a Y a 2 r2 y 2  i bia r Y ) = C ( r r2 Y y 2  I P r~ ) ( i U r i2 a L I biap r ) (F8) 
P 

of great importance in calculating Clebsch-Gordan coefficients as well as coefficients 
of fractional parentage. 

By combining (F9), (F7), (F2) for J, (F2) for G, and (F10) three times, we obtain 
the symmetric character formula 

C I(ilalrl iza2r21biap r)t2 
bo  

= [i1[ri1[rz1111-~1b1-~ J I x’l(Rs>x’2(Rt)x’(R-’u)xr,(rs-’) 
9 € 0 4  

X xrz(rtC1)xr(r-lu-l) dR dr ds dt du, (F11)’ 
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It should be noted that the form for (F12) differs from the one for (12) of Fieck (1977). 
A more similar form would be obtained if 

,y'l(R-'s),y'l(Rt),y'(R),yr'(s-") dR ds dt I, I,,, 
= 5 1 9 6 0 2  

,y'l(R-'s Rt)X'(R)Xr1(s-'>,yr'(t-') dR ds dt, 

an identity that holds when the reduction jl 4 rl is multiplicity free, i.e. when 

Finally, when using eigenvalues of a normal (for example Hermitian) tensor 
operator TioroYo for describing outer multiplicity labels, relations (F12)' and (F12) can 
be modified according to 

4rllil)= 1. 

where the eigenvalue A l ( j l  juorl) of TioroYo depends on jl, j ,  UO,  and rl. 
To close 0 3 let us note that, when transcribed in terms off symbols, the integrals 

reported here can be written down in symmetric form by applying rule 1 for the triads 
of J and G in conjunction with the following rule. 

Rule 3. The reduction j .1 r is depicted by 

By way of illustration let us consider 

The couplings for J and G introduce the factors 

respectively, while the reductions j z  4 r2, j 4 r, and jl .1 rl are depicted by 

[r~]lel-' J6,&. . . s),yrz(. . . s-') ds, 

[r]l&l-' x'(. . . t),yr(. . . t-')dt, 
e; 
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and 

respectively. As a final result we obtain 

which may also be deduced from (F11)’ through some algebraic manipulations. 
Rules 1, 2, and 3 might be generalised for writing down any product of recoupling 

coefficients for n = 3, 4,. . . classes of irreducible representations of J and G and 
isoscalar factors of J = G  (modulo summation over all relevant inner and outer 
multiplicity labels), that is, any product such that a given triad for J or G appears as 
many times in covariant form as in contravariant form. These and related matters will 
be the subject of future investigations. In particular, we (Kibler and Elbaz 1977, to be 
submitted for publication) hope to establish a further connection, based on the 
diagrammatic equivalent of the characters, between plane geometry and theory of 
invariants. 

4. The chain SU2 1 G 

We now go to the chain SU2 2 G. The group G may be realised as the double group of 
a (finite) subgroup of the proper rotation group in three dimensions so that the chain 
SU2 XI G finds uses in molecular and solid state physics. For the J = SUI case, we have 
j = 0, 4, 1, . . , and [ j] = 2 j  + 1. Further, there is no need for the inner multiplicity label 
b. Finally, the transformation (jmljar‘y) allows one to pass from the axial chain 
SU2 3 U1, a multiplicity-free chain associated with the { J 2 ,  J,} scheme, to the molecu- 
lar chain SU2 =I G, a generally multiplicity-non-free chain associated with the { J 2 ,  P:} 
scheme, where P: is a ry-projection operator for G. 

In the situation where J = SU2, it is convenient to define the f symbol outlined in 
0 3 by (Kibler 1968) 

Alternatively we have 

in terms of the symbol of Fano and Racah (1959). Note that the f parallels to some 
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extent the while the f symbol defined by (Kibler 1968) 

i1 ) *  Xf(a;r:y: - a2r2Y2 alr lyl  
i 3  i 2  

fully parallels the 3-jm symbol of Wigner. The f and f symbols turn out to be of great 
importance in molecular physics and more specifically in electronic and vibrational- 
rotational spectroscopy of molecular aggregates. In particular, the interest of the f 
symbols for ligand field theory and related phenomena has been discussed by Kibler 
(1968, 1969). As a result, they prove to be very useful in determining optical and 
magnetic properties of dN and f N  systems in molecular or solid state environments. 
The case r = ro is of special importance for the applications. From Racah's lemma it 
can be shown that 

where 

The coefficient f(J,'rJ;r&J is particularly appropriate for calculating matrix elements 
of an SU2 irreducible tensor operator invariant under G. It generalises the f 
coefficient used by Schonfeld, Flato, and Rosengarten (cf Low and Rosengarten 1964, 
Flato 1965) in the study of energy levels for transition-metal ions in cubical, tetra- 
gonal or trigonal crystalline fields. The f coefficients for numerous chains SU2 3 GI 2 
GZ 3 .  . . of physical and chemical interest are presently under study in connection with 
molecular structure calculations on molecular and solid state aggregates. As a preli- 
minary result, extensive tables off  coefficients for the chain SU2 3 O* 2 D $ 3  DT, i.e. 
working for cubical, tetragonal, and orthorhombic symmetries, have been the subject 
of an unpublished report by Kibler and Guichon (1975) which is obtainable from the 
present author. The f's we deal with in this paper are useful for computing matrix 
elements, between state vectors of total angular momenta jl, j 2  = 0, 4, . . . , 6 ,  of 
operators transforming as 

@ h b E  Y : , ~ ~ ~ = ( 7 / 1 2 ) ~ / ~ Y 2 +  (5/24)'/'(y?4+ Y,"), 
@:ub" Y f ; l ~ l ~  = (1/8)"'Y0"- (7/16)'/'( Y_64 + Y,"), 

Y ~ A , A =  YO', 
Y ~ A ~ A =  -(5/12)"2Y2+(7/24)1/2(Y?4+ Y,"), 

@,Pet E Y:.A~A= (7/8)1/2Y$+ (1/16)1/2( Y24 + Y,"), 
E Y,&~A = (1/2)'"( ~ _ 2 2  + Y,'), 

@.bt- y i B 1 A =  (1/2)'/~(~_42 + Y,"), 
6 

@ort , i"  Y~2~1~=(11 /32)1 /2 (Y_62+  Y:)-(5/32)1/2(Y_6,j+ Y,"), 
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and 
aOrt,2= 6 (5/32)1'2(Y_62+ Y26)+(11/32)1'2(Y_66+ Y,"), 

where Y," denotes the qth spherical harmonic of order k. The basis 
{Ijar(O*)I'(D4*)T(D~)y):j = 0, i, . . . , 6  and a r y  ranging} has been chosen in order to 
get real coefficients in the form f d(p/q) (p, q EN) with simple symmetry properties. 

Relation ( F l l )  may be transcribed to SU2 3 G in terms of f symbols as 

Y I Y Z Y  

x,yr(t-')Xr1(ud1j dR ds dt  du. 

As a special case, we get finally 
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